Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
J Transl Med ; 21(1): 358, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-20234027

ABSTRACT

BACKGROUND: The distribution of ACE2 and accessory proteases (ANAD17 and CTSL) in cardiovascular tissue and the host cell receptor binding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial to understanding the virus's cell invasion, which may play a significant role in determining the viral tropism and its clinical manifestations. METHODS: We conducted a comprehensive analysis of the cell type-specific expression of ACE2, ADAM17, and CTSL in myocardial tissue from 10 patients using RNA sequencing. Our study included a meta-analysis of 2 heart single-cell RNA-sequencing studies with a total of 90,024 cells from 250 heart samples of 10 individuals. We used co-expression analysis to locate specific cell types that SARS-CoV-2 may invade. RESULTS: Our results revealed cell-type specific associations between male gender and the expression levels of ACE2, ADAM17, and CTSL, including pericytes and fibroblasts. AGT, CALM3, PCSK5, NRP1, and LMAN were identified as potential accessory proteases that might facilitate viral invasion. Enrichment analysis highlighted the extracellular matrix interaction pathway, adherent plaque pathway, vascular smooth muscle contraction inflammatory response, and oxidative stress as potential immune pathways involved in viral infection, providing potential molecular targets for therapeutic intervention. We also found specific high expression of IFITM3 and AGT in pericytes and differences in the IFN-II signaling pathway and PAR signaling pathway in fibroblasts from different cardiovascular comorbidities. CONCLUSIONS: Our data indicated possible high-risk groups for COVID-19 and provided emerging avenues for future investigations of its pathogenesis. TRIAL REGISTRATION: (Not applicable).


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Male , Adult , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Myocardium/metabolism , Single-Cell Analysis , Peptidyl-Dipeptidase A/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins
2.
Biochim Biophys Acta Biomembr ; 1865(6): 184174, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2324713

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID, replicates at intracellular membranes. Bone marrow stromal antigen 2 (BST-2; tetherin) is an antiviral response protein that inhibits transport of viral particles after budding within infected cells. RNA viruses such as SARS-CoV-2 use various strategies to disable BST-2, including use of transmembrane 'accessory' proteins that interfere with BST-2 oligomerization. ORF7a is a small, transmembrane protein present in SARS-CoV-2 shown previously to alter BST-2 glycosylation and function. In this study, we investigated the structural basis for BST-2 ORF7a interactions, with a particular focus on transmembrane and juxtamembrane interactions. Our results indicate that transmembrane domains play an important role in BST-2 ORF7a interactions and mutations to the transmembrane domain of BST-2 can alter these interactions, particularly single-nucleotide polymorphisms in BST-2 that result in mutations such as I28S. Using molecular dynamics simulations, we identified specific interfaces and interactions between BST-2 and ORF7a to develop a structural basis for the transmembrane interactions. Differences in glycosylation are observed for BST-2 transmembrane mutants interacting with ORF7a, consistent with the idea that transmembrane domains play a key role in their heterooligomerization. Overall, our results indicate that ORF7a transmembrane domain interactions play a key role along with extracellular and juxtamembrane domains in modulating BST-2 function.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cell Membrane/genetics , Cell Membrane/metabolism , COVID-19/metabolism , Membrane Proteins/metabolism , SARS-CoV-2/genetics , Viral Regulatory and Accessory Proteins/metabolism
4.
Nano Lett ; 23(8): 3377-3384, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2317386

ABSTRACT

Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker.


Subject(s)
Influenza, Human , Spike Glycoprotein, Coronavirus , Humans , Membrane Fusion , Cell Membrane/metabolism , Membrane Proteins/metabolism , Lipids
5.
Mutat Res Rev Mutat Res ; 790: 108440, 2022.
Article in English | MEDLINE | ID: covidwho-2308772

ABSTRACT

In higher eukaryotes, sophisticate regulation of genome function requires all chromosomes to be packed into a single nucleus. Micronucleus (MN), the dissociative nucleus-like structure frequently observed in aging and multiple disease settings, has critical, yet under-recognized, pathophysiological functions. Micronuclei (MNi) have recently emerged as major sources of cytosolic DNA that can activate the cGAS-STING axis in a cell-intrinsic manner. However, MNi induced from different genotoxic stressors display great heterogeneity in binding or activating cGAS and the signaling responses downstream of the MN-induced cGAS-STING axis have divergent outcomes including autoimmunity, autoinflammation, metastasis, or cell death. Thus, full characterization of molecular network underpinning the interplay of cGAS and MN is important to elucidate the pathophysiological roles of immunogenic MN and design improved drugs that selectively target cancer via boosting the MN-derived cGAS-STING axis. Here, we summarize our current understanding of the mechanisms for self-DNA discrimination by cGAS. We focus on discussing how MN immunogencity is dictated by multiple mechanisms including integrity of micronuclear envelope, state of nucleosome and DNA, competitive factors, damaged mitochondrial DNA and micronucleophagy. We also describe emerging links between immunogenic MN and human diseases including cancer, neurodegenerative diseases and COVID-19. Particularly, we explore the exciting concept of inducing immunogenic MN as a therapeutic approach in treating cancer. We propose a new theoretical framework to describe immunogenic MN as a biological sensor to modulate cellular processes in response to genotoxic stress and provide perspectives on developing novel experimental approaches to unravel the complexity of MN immunogenicity regulation and immunogenic MN pathophysiology.


Subject(s)
COVID-19 , Neoplasms , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , DNA/metabolism , Neoplasms/genetics , Immunity, Innate/genetics
6.
J Cell Biol ; 222(7)2023 07 03.
Article in English | MEDLINE | ID: covidwho-2305708

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent for the global COVID-19 pandemic, triggers the formation of endoplasmic reticulum (ER)-derived replication organelles, including double-membrane vesicles (DMVs), in the host cell to support viral replication. Here, we clarify how SARS-CoV-2 hijacks host factors to construct the DMVs. We show that the ER morphogenic proteins reticulon-3 (RTN3) and RTN4 help drive DMV formation, enabling viral replication, which leads to productive infection. Different SARS-CoV-2 variants, including the delta variant, use the RTN-dependent pathway to promote infection. Mechanistically, our results reveal that the membrane-embedded reticulon homology domain (RHD) of the RTNs is sufficient to functionally support viral replication and physically engage NSP3 and NSP4, two viral non-structural membrane proteins known to induce DMV formation. Our findings thus identify the ER morphogenic RTN3 and RTN4 membrane proteins as host factors that help promote the biogenesis of SARS-CoV-2-induced DMVs, which can act as viral replication platforms.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Organelles , SARS-CoV-2 , Humans , COVID-19/virology , Endoplasmic Reticulum/virology , Membrane Proteins/metabolism , Pandemics , SARS-CoV-2/physiology , Virus Replication , Organelles/virology , Viral Nonstructural Proteins/metabolism
7.
Zool Res ; 44(3): 505-521, 2023 May 18.
Article in English | MEDLINE | ID: covidwho-2306427

ABSTRACT

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Subject(s)
COVID-19 , Rodent Diseases , Zika Virus Infection , Zika Virus , Humans , Male , Mice , Animals , Testis , NF-kappa B/metabolism , COVID-19/veterinary , SARS-CoV-2/metabolism , Homeostasis , Fertility , Zika Virus/metabolism , Zika Virus Infection/metabolism , Zika Virus Infection/veterinary , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/pharmacology , Rodent Diseases/metabolism
8.
J Mol Med (Berl) ; 101(4): 449-460, 2023 04.
Article in English | MEDLINE | ID: covidwho-2287607

ABSTRACT

Studies showed that SARS-CoV-2 can directly target the kidney and induce renal damage. As the cell surface receptor for SARS-CoV-2 infection, the angiotensin-converting enzyme 2 (ACE2) plays a pivotal role for renal physiology and function. Thus, it is important to understand ACE2 through which pathway influences the pathogenesis of renal damage induced by COVID-19. In this study, we first performed an eQTL mapping for Ace2 in kidney tissues in 53 BXD mice strains. Results demonstrated that Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney, with six genes (Dnase1, Vasn, Usp7, Abat, Mgrn1, and Rbfox1) dominated as the upstream modulator, as they are highly correlated with Ace2 expression. Gene co-expression analysis showed that Ace2 co-variates are significantly involved in the renin-angiotensin system (RAS) pathway which acts as a reno-protector. Importantly, we also found that Ace2 is positively correlated with Pdgf family members, particularly Pdgfc, which showed the most association among the 76 investigated growth factors. Mammalian Phenotype Ontology enrichment indicated that the cognate transcripts for both Ace2 and Pdgfc were mainly involved in regulating renal physiology and morphology. Among which, Cd44, Egfr, Met, Smad3, and Stat3 were identified as hub genes through protein-protein interaction analysis. Finally, in aligning with our systems genetics findings, we found ACE2, pdgf family members, and RAS genes decreased significantly in the CAKI-1 kidney cancer cells treated with S protein and receptor binding domain structural protein. Collectively, our data suggested that ACE2 work with RAS, PDGFC, as well as their cognate hub genes to regulate renal function, which could guide for future clinical prevention and targeted treatment for COVID-19-induced renal damage outcomes. KEY MESSAGES: • Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney. • Ace2 co-variates are enriched in the RAS pathway. • Ace2 is strongly correlated with the growth factor Pdgfc. • Ace2 and Pdgfc co-expressed genes involved in the regulation of renal physiology and morphology. • SARS-CoV-2 spike glycoprotein induces down-regulation of Ace2, RAS, and Pdgfc.


Subject(s)
COVID-19 , Animals , Mice , COVID-19/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Peptidyl-Dipeptidase A/genetics , Kidney/metabolism , Mammals/metabolism , Ubiquitin-Protein Ligases , Membrane Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism
9.
Food Chem Toxicol ; 174: 113656, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2263517

ABSTRACT

Chronic cigarette smoke condensate (CSC) exposure is one of the preventable risk factors in the CS-induced lung cancer. However, understanding the mechanism of cellular transformation induced by CS in the lung remains limited. We investigated the effect of long term exposure of CSC in human normal lung epithelial Beas-2b cells, and chemopreventive mechanism of organosulphur garlic compounds, diallyl sulphide (DAS) and diallyl disulphide (DADS) using Next Generation Sequencing (NGS) transcriptomic analysis. CSC regulated 1077 genes and of these 36 genes are modulated by DAS while 101 genes by DADS. DAS modulated genes like IL1RL1 (interleukin-1 receptor like-1), HSPA-6 (heat shock protein family A, member 6) while DADS demonstrating ADTRP (Androgen-Dependent TFPI Regulating Protein), ANGPT4 (Angiopoietin 4), GFI1 (Growth Factor-Independent 1 Transcriptional Repressor), TBX2 (T-Box Transcription Factor 2), with some common genes like NEURL-1 (Neuralized E3-Ubiquitin Protein Ligase 1), suggesting differential effects between these two garlic compounds. They regulate genes by influencing pathways including HIF-1alpha, STAT-3 and matrix metalloproteases, contributing to the chemoprotective ability of organosulfur garlic compounds against CSC-induced cellular transformation. Taken together, we demonstrated CSC induced global gene expression changes pertaining to cellular transformation which potentially can be delayed with dietary chemopreventive phytochemicals like DS and DADS influencing alterations at the transcriptomic level.


Subject(s)
Allyl Compounds , Cigarette Smoking , Garlic , Humans , Allyl Compounds/pharmacology , Epithelial Cells , Garlic/chemistry , Lung , Membrane Proteins/metabolism , Sulfur Compounds/pharmacology , Tobacco , Transcriptome
10.
Mol Biol Rep ; 50(5): 4645-4652, 2023 May.
Article in English | MEDLINE | ID: covidwho-2263419

ABSTRACT

Members of the Numb-associated kinase family of serine/threonine kinases play an essential role in many cellular processes, such as endocytosis, autophagy, dendrite morphogenesis, osteoblast differentiation, and the regulation of the Notch pathway. Numb-associated kinases have been relevant to diverse diseases, including neuropathic pain, Parkinson's disease, and prostate cancer. Therefore, they are considered potential therapeutic targets. In addition, it is reported that Numb-associated kinases have been involved in the life cycle of multiple viruses such as hepatitis C virus (HCV), Ebola virus (EBOV), and dengue virus (DENV). Recently, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten global health. Studies show that Numb-associated kinases are implicated in the infection of SARS-CoV-2 which can be suppressed by Numb-associated kinases inhibitors. Thus, Numb-associated kinases are proposed as potential host targets for broad-spectrum antiviral strategies. We will focus on the recent advances in Numb-associated kinases-related cellular functions and their potential as host targets for viral infections in this review. Questions that remained unknown on the cellular functions of Numb-associated kinases will also be discussed.


Subject(s)
COVID-19 , Hepatitis C , Male , Humans , SARS-CoV-2/metabolism , Protein Serine-Threonine Kinases/metabolism , Endocytosis , Antiviral Agents , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
11.
EMBO J ; 42(10): e112234, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2284890

ABSTRACT

The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Interferons/metabolism , Phospholipids , Phosphatidylinositol 3-Kinases/metabolism , RNA, Viral , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Virus Internalization , Membrane Proteins/metabolism
13.
PLoS One ; 18(3): e0283304, 2023.
Article in English | MEDLINE | ID: covidwho-2270561

ABSTRACT

INTRODUCTION: Extracorporeal blood purification systems represent a promising alternative for treatment of blood stream infections with multiresistant bacteria. OBJECTIVES: The aim of this study was to analyse the binding activity of S. aureus to Seraph affinity filters based on heparin coated beads and to identify effectors influencing this binding activity. RESULTS: To test the binding activity, we used gfp-expressing S. aureus Newman strains inoculated either in 0.9% NaCl or in blood plasma and determined the number of unbound bacteria by FACS analyses after passing through Seraph affinity filters. The binding activity of S. aureus was clearly impaired in human plasma: while a percent removal of 42% was observed in 0.9% NaCl (p-value 0.0472) using Seraph mini columns, a percent removal of only 10% was achieved in human plasma (p-value 0.0934). The different composition of surface proteins in S. aureus caused by the loss of SarA, SigB, Lgt, and SaeS had no significant influence on its binding activity. In a clinically relevant approach using the Seraph® 100 Microbind® Affinity Filter and 1000 ml of human blood plasma from four different donors, the duration of treatment was shown to have a critical effect on the rate of bacterial reduction. Within the first four hours, the number of bacteria decreased continuously and the reduction in bacteria reached statistical significance after two hours of treatment (percentage reduction 64%, p-value 0.01165). The final reduction after four hours of treatment was close to 90% and is dependent on donor. The capacity of Seraph® 100 for S. aureus in human plasma was approximately 5 x 108 cells. CONCLUSIONS: The Seraph affinity filter, based on heparin-coated beads, is a highly efficient method for reducing S. aureus in human blood plasma, with efficiency dependent on blood plasma composition and treatment duration.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Duration of Therapy , Membrane Proteins/metabolism , Saline Solution/pharmacology , Bacteria , Heparin/pharmacology
14.
J Interferon Cytokine Res ; 42(8): 430-443, 2022 08.
Article in English | MEDLINE | ID: covidwho-2278024

ABSTRACT

Interferon-induced transmembrane (IFITM) proteins mediate protection against enveloped viruses by blocking membrane fusion at endosomes. IFITM1 and IFITM3 are crucial for protection against influenza, and various single nucleotide polymorphisms altering their function have been linked to disease susceptibility. However, bulk IFITM1 and IFITM3 mRNA expression dynamics and their correlation with clinical outcomes have not been extensively addressed in patients with respiratory infections. In this study, we evaluated the expression of IFITM1 and IFITM3 in peripheral leukocytes from healthy controls and individuals with severe pandemic influenza A(H1N1) or coronavirus disease 2019 (COVID-19). Comparisons between participants grouped according to their clinical characteristics, underlying disease, and outcomes showed that the downregulation of IFITM1 was a distinctive characteristic of severe pandemic influenza A(H1N1) that correlated with outcomes, including mortality. Conversely, increased IFITM3 expression was a common feature of severe pandemic influenza A(H1N1) and COVID-19. Using a high-dose murine model of infection, we confirmed not only the downregulation of IFITM1 but also of IFITM3 in the lungs of mice with severe influenza, as opposed to humans. Analyses in the comparative cohort also indicate the possible participation of IFITM3 in COVID-19. Our results add to the evidence supporting a protective function of IFITM proteins against viral respiratory infections in humans.


Subject(s)
Antigens, Differentiation , COVID-19 , Influenza, Human , Membrane Proteins , RNA-Binding Proteins , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , COVID-19/genetics , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/genetics , Leukocytes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
15.
Am J Respir Cell Mol Biol ; 69(1): 45-56, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2269396

ABSTRACT

Progressive pulmonary fibrosis results from a dysfunctional tissue repair response and is characterized by fibroblast proliferation, activation, and invasion and extracellular matrix accumulation. Lung fibroblast heterogeneity is well recognized. With single-cell RNA sequencing, fibroblast subtypes have been reported by recent studies. However, the roles of fibroblast subtypes in effector functions in lung fibrosis are not well understood. In this study, we incorporated the recently published single-cell RNA-sequencing datasets on murine lung samples of fibrosis models and human lung samples of fibrotic diseases and analyzed fibroblast gene signatures. We identified and confirmed the novel fibroblast subtypes we reported recently across all samples of both mouse models and human lung fibrotic diseases, including idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease, and coronavirus disease (COVID-19). Furthermore, we identified specific cell surface proteins for each fibroblast subtype through differential gene expression analysis, which enabled us to isolate primary cells representing distinct fibroblast subtypes by flow cytometry sorting. We compared matrix production, including fibronectin, collagen, and hyaluronan, after profibrotic factor stimulation and assessed the invasive capacity of each fibroblast subtype. Our results suggest that in addition to myofibroblasts, lipofibroblasts and Ebf1+ (Ebf transcription factor 1+) fibroblasts are two important fibroblast subtypes that contribute to matrix deposition and also have enhanced invasive, proliferative, and contraction phenotypes. The histological locations of fibroblast subtypes are identified in healthy and fibrotic lungs by these cell surface proteins. This study provides new insights to inform approaches to targeting lung fibroblast subtypes to promote the development of therapeutics for lung fibrosis.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Humans , Mice , Animals , COVID-19/metabolism , Fibroblasts/metabolism , Lung/pathology , Idiopathic Pulmonary Fibrosis/pathology , Fibrosis , Membrane Proteins/metabolism
16.
PLoS Biol ; 21(2): e3001959, 2023 02.
Article in English | MEDLINE | ID: covidwho-2235567

ABSTRACT

The interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to Coronavirus Disease 2019 (COVID-19). The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary angiotensin-converting enzyme 2 (ACE2) receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was functionally restricted to SARS-CoV-2 by accessibility. We localized the interaction to the C-terminus of the S1 domain and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Levels of LRRC15 were greatly elevated by inflammatory signals in the lungs of COVID-19 patients. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence that it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Membrane Proteins/metabolism
17.
PLoS Biol ; 21(2): e3001967, 2023 02.
Article in English | MEDLINE | ID: covidwho-2232701

ABSTRACT

Although ACE2 is the primary receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, a systematic assessment of host factors that regulate binding to SARS-CoV-2 spike protein has not been described. Here, we use whole-genome CRISPR activation to identify host factors controlling cellular interactions with SARS-CoV-2. Our top hit was a TLR-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15). LRRC15 expression was sufficient to promote SARS-CoV-2 spike binding where they form a cell surface complex. LRRC15 mRNA is expressed in human collagen-producing lung myofibroblasts and LRRC15 protein is induced in severe Coronavirus Disease 2019 (COVID-19) infection where it can be found lining the airways. Mechanistically, LRRC15 does not itself support SARS-CoV-2 infection, but fibroblasts expressing LRRC15 can suppress both pseudotyped and authentic SARS-CoV-2 infection in trans. Moreover, LRRC15 expression in fibroblasts suppresses collagen production and promotes expression of IFIT, OAS, and MX-family antiviral factors. Overall, LRRC15 is a novel SARS-CoV-2 spike-binding receptor that can help control viral load and regulate antiviral and antifibrotic transcriptional programs in the context of COVID-19 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , COVID-19/genetics , Antiviral Agents/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Fibroblasts/metabolism , Protein Binding , Membrane Proteins/genetics , Membrane Proteins/metabolism
18.
J Mol Biol ; 435(8): 168008, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2230334

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replicates and evades detection using ER membranes and their associated protein machinery. Among these hijacked human proteins is selenoprotein S (selenos). This selenoprotein takes part in the protein quality control, signaling, and the regulation of cytokine secretion. While the role of selenos in the viral life cycle is not yet known, it has been reported to interact with SARS-CoV-2 nonstructural protein 7 (nsp7), a viral protein essential for the replication of the virus. We set to study whether selenos and nsp7 interact directly and if they can still bind when nsp7 is bound to the replication and transcription complex of the virus. Using biochemical assays, we show that selenos binds directly to nsp7. In addition, we found that selenos can bind to nsp7 when it is in a complex with the coronavirus's minimal replication and transcription complex, comprised of nsp7, nsp8, and the RNA-dependent RNA polymerase nsp12. In addition, through crosslinking experiments, we mapped the interaction sites of selenos and nsp7 in the replication complex and showed that the hydrophobic segment of selenos is essential for binding to nsp7. This arrangement leaves an extended helix and the intrinsically disordered segment of selenos-including the reactive selenocysteine-exposed and free to potentially recruit additional proteins to the replication and transcription complex.


Subject(s)
Membrane Proteins , SARS-CoV-2 , Selenoproteins , Transcription, Genetic , Viral Nonstructural Proteins , Virus Replication , Humans , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Selenoproteins/genetics , Selenoproteins/metabolism , Viral Nonstructural Proteins/metabolism , Membrane Proteins/metabolism
19.
Mol Immunol ; 154: 45-53, 2023 02.
Article in English | MEDLINE | ID: covidwho-2165718

ABSTRACT

mascRNA (MALAT1-associated small cytoplasmic RNA) is a tRNA-like cytoplasmic small noncoding RNA whose function remains elusive. We previously revealed that this small RNA negatively regulates TLR4/2-triggered proinflammatory response while positively regulates TLR3-induced antiviral response. Here, we investigated whether and how mascRNA influences the stimulator of interferon genes (STING) signaling-triggered immune response. We found that overexpression of mascRNA inhibited the expression of type I interferon (IFN) genes and proinflammatory cytokines in response to cytosolic DNA stimulation; meanwhile, the abundance of STING protein and the level of phosphorylated TBK1 and STAT1 was decreased. By contrast, depletion of mascRNA potentiated the expression of type I IFNs, increased STING protein abundance, and promoted STING-mediated phosphorylation of TBK1 and STAT1 in response to DNA stimulation. In a mouse model of DNA-induced lung injury, exogenous mascRNA mitigated the antiviral response and the severity of lung inflammation. Mechanically, mascRNA was found to promote STING for K48-linked ubiquitination and degradation in macrophages both with and without cytosolic DNA stimulation. Hence, mascRNA suppresses STING-TBK1 signaling-mediated innate immunity through promoting proteasomal degradation of STING, and this tRNA-like small RNA holds promise for the treatment of certain inflammatory diseases such as COVID-19 where aberrant STING signaling drives type I IFN immunopathology.


Subject(s)
COVID-19 , Interferon Type I , Animals , Mice , Antiviral Agents , DNA , Immunity, Innate , Interferon Type I/metabolism , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA/metabolism , Ubiquitination
20.
Antiviral Res ; 209: 105509, 2023 01.
Article in English | MEDLINE | ID: covidwho-2165064

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to global public health, underscoring the urgent need for the development of preventive and therapeutic measures. The spike (S) protein of SARS-CoV-2, which mediates receptor binding and subsequent membrane fusion to promote viral entry, is a major target for current drug development and vaccine design. The S protein comprises a large N-terminal extracellular domain, a transmembrane domain, and a short cytoplasmic tail (CT) at the C-terminus. CT truncation of the S protein has been previously reported to promote the infectivity of SARS-CoV and SARS-CoV-2 pseudoviruses. However, the underlying molecular mechanism has not been precisely elucidated. In addition, the CT of various viral membrane glycoproteins play an essential role in the assembly of virions, yet the role of the S protein CT in SARS-CoV-2 infection remains unclear. In this study, through constructing a series of mutations of the CT of the S protein and analyzing their impact on the packaging of the SARS-CoV-2 pseudovirus and live SARS-CoV-2 virus, we identified V1264L1265 as a new intracellular targeting motif in the CT of the S protein, that regulates the transport and subcellular localization of the spike protein through the interactions with cytoskeleton and vesicular transport-related proteins, ARPC3, SCAMP3, and TUBB8, thereby modulating SARS-CoV-2 pseudovirus and live SARS-CoV-2 virion assembly. Either disrupting the V1264L1265 motif or reducing the expression of ARPC3, SCAMP3, and TUBB8 significantly repressed the assembly of the live SARS-CoV-2 virion, raising the possibility that the V1264L1265 motif and the host responsive pathways involved could be new drug targets for the treatment of SARS-CoV-2 infection. Our results extend the understanding of the role played by the S protein CT in the assembly of pseudoviruses and live SARS-CoV-2 virions, which will facilitate the application of pseudoviruses to the study of SARS-CoV-2 and provide potential strategies for the treatment of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus , Amino Acid Sequence , Tubulin/metabolism , Carrier Proteins/metabolism , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL